Detailed information can be obtained from H. Alfares and A. Al-Amer, "An optimization model for guiding the petrochemical industry development in Saudi Arabia," Engineering Optimization, vol. 34, pp. 671-687, 2002/01/01 2002.

NOMENCLATURE

Following indices, sets, parameters and variables are required in the proposed formulation.

DECISION VARIABLES	X^{j}	amount of production carried out in process j.
	Y^{j}	binary variable assumes value of one if production level X^j is between l^j and m^j and zero otherwise.
	Z^{j}	binary variable, assumes a value of one if production level X^j is greater than zero, and zero otherwise.
	L^{j},M^{j},H^{j}	represents the proportion of production level l , level m and level h respectively in production of a product using process j .
PARAMETERS	i	Product number, $i = 1,I$ (total number of products)
	j	Process number, $i = 1,J$ (total number of processes)
	k	Capacity level indicator
	t	Raw material number, $t = 1, T$ (total number of raw materials)
	q	By-product number, $q = 1,Q$ (total number of by-products)
	b_t^j	Total amount of raw material <i>t</i> consumed in process <i>j</i> .
	В	Total budget available.
	c_k^j	unit production cost of process j for capacity level k .
	E^{j}	per unit export selling price for process j.
	l^j, m^j, h^j	Low, medium and high level production capacity of process <i>j</i> respectively.
	R_{t}	total available amount of raw material t.
	v_k^j	investment cost for process j at capacity k .
	S_q^j	selling price of by-product q from process j .
	S_i	set of all processes with the main product <i>i</i> .
	N_i	number of process in product i .
	W_q^j	production quantity of by-product k in process j.
	Q^{j}	number of by-products in process <i>j</i> .
	$lpha_q^{j}$	product dependent production capacity of by-product k in process j.
	$oldsymbol{eta}_q^{j}$	fixed production capacity of by-product k in process j .

OBJECTIVE

The objective is to maximize the profit (P) given in Equation (1) which is the difference between the total revenue obtained by selling the products (and by-products) and the total production cost incurred.

$$Max \quad P = \sum_{j=1}^{J} E^{j} X^{j} + \sum_{j=1}^{J} \sum_{q=1}^{Q} \left(S_{q}^{j} W_{q}^{j} - C^{j} \right)$$
 (1)

CONSTRANTS

$$X^{j} = l^{j}L^{j} + m^{j}M^{j} + h^{j}H^{j}$$
 $\forall j = 1, 2..., J$ (2)

In Equation (2), X^j is expressed as a linear combination of three variables L^j , M^j and H^j which denotes the amount of product that is produced from process j. These three variables depict the proportions of the production levels l^j , m^j and h^j being used.

$$L^{j} \le Y^{j} \qquad \forall j = 1, 2..., J \tag{3}$$

$$H^{j} \le 1 - Y^{j} \qquad \forall j = 1, 2..., J \tag{4}$$

Equation (3) and (4) ensure that the binary variable Y^j would assume a value of 1 if the amount of production is between t^j and t^j , and a value of 0 if production level is between t^j and t^j .

$$L^{j} + M^{j} + H^{j} = Z^{j}$$
 $\forall j = 1, 2..., J$ (5)

$$X^{j} \le \lambda Z^{j} \qquad \forall j = 1, 2..., J \tag{6}$$

In Equation (5) and (6), the sum of L^j , M^j and H^j is restricted to 1 if $X^j > 0$, and equal to 0 if $X^j = 0$.

$$C^{j} = c_{i}^{j} L^{j} + c_{m}^{j} M^{j} + c_{h}^{j} H^{j}$$
(7)

Equation (7) determines the cost of producing X^{j} from the process j and would be equal to zero if a process is not employed.

$$W_a^j = \alpha_a^j X^j + \beta_a^j Z^j \quad \forall q = 1, 2, ... Q, j = 1, 2, ... J$$
 (8)

In Equation (8), W_q^j is the total amount of by-product of type q that is produced from process j and is a linear function of X^j as α_q^j and β_q^j are parameters which are to be known a priori.

$$\sum_{i=1}^{J} b_i^j X^j \le R_t \qquad \forall t = 1, \dots, T$$
 (9)

Equation (9) restricts that the total amount of raw material of type t that is required does not exceed the total available quantity (R_t) .

$$\sum_{i=1}^{J} v_i^j L^j + v_m^j M^j + v_h^j H^j \le B \tag{10}$$

Equation (10) restricts the total investment cost of all the selected processes from exceeding the total budget available (B).

$$\sum_{i \in S_i} Z_j \le N_i \qquad \forall i = 1, \dots, I$$
 (11)

Equation (11) is the *custom process constraint* (CPC) and limits the number of processes used for the production of each product to a pre-specified value (N_i). If all the values of N_i are restricted to one, it would correspond to the *unique process constraint* (UPC) used in the literature. Equation (1) to (11) comprise the Mixed Integer Linear Programming model for this combinatorial optimization problem.

STRUCTURE

$$\left[\overbrace{X^{I}, X^{2}, X^{3},, X^{J}}^{Continuous Variables}, \overbrace{L^{I}, L^{2}, L^{3},, L^{J}}^{Continuous Variables}, \overbrace{M^{I}, M^{2}, M^{3},, M^{J}}^{Continuous Variables}, \overbrace{H^{I}, H^{2}, H^{3},, H^{J}}^{Continuous Variables}, \underbrace{H^{I}, H^{2}, H^{3},, H^{J}}_{Continuous Variables},$$

In the above structure, the first J variables correspond to X, the next three sets of J variables correspond to L, M and H. All these 4J variables are continuous decision variables. This is followed by the 2J binary variables corresponding to Y and Z. Thus the length of the decision vector is 6J with the last set of 2J variables being binary variables and corresponds to the value used in *intcon* in *intlinprog*. In the case of production with by-products, this structure has to be appropriately modified to incorporate the continuous variables corresponding to W_d^J .